Optical Clearing in Dense Connective Tissues to Visualize Cellular Connectivity In Situ
نویسندگان
چکیده
Visualizing the three-dimensional morphology and spatial patterning of cells embedded deep within dense connective tissues of the musculoskeletal system has been possible only by utilizing destructive techniques. Here we utilize fructose-based clearing solutions to image cell connectivity and deep tissue-scale patterning in situ by standard confocal microscopy. Optical clearing takes advantage of refractive index matching of tissue and the embedding medium to visualize light transmission through a broad range of bovine and whole mount murine tissues, including cartilage, bone, and ligament, of the head and hindlimb. Using non-destructive methods, we show for the first time intercellular chondrocyte connections throughout the bulk of cartilage, and we reveal in situ patterns of osteocyte processes and the lacunar-canalicular system deep within mineralized cortical bone. Optical clearing of connective tissues is expected to find broad application for the study of cell responses in normal physiology and disease pathology.
منابع مشابه
Seeing through Musculoskeletal Tissues: Improving In Situ Imaging of Bone and the Lacunar Canalicular System through Optical Clearing
In situ, cells of the musculoskeletal system reside within complex and often interconnected 3-D environments. Key to better understanding how 3-D tissue and cellular environments regulate musculoskeletal physiology, homeostasis, and health is the use of robust methodologies for directly visualizing cell-cell and cell-matrix architecture in situ. However, the use of standard optical imaging tech...
متن کاملIn-situ reactive synthesis of full dense Si2N2O by incorporating of Amourphous nanosized Si3N4;effect of MgO and Y2O3
Si2N2O is considered as a new great potential structural/functional candidate in place of Si3N4. The amorphous Si3N4 nanopowder was incorporated into silica sol by adding of MgO and Y2O3 as sintering aid. Synthesized powders were heated by spark plasma sintering at a heating rate of 100 oC/min yielded fully dense compacts at 1550 and 1750 oC for 40 min. The phase formation of samples was charac...
متن کاملOptical properties of mouse brain tissue after optical clearing with FocusClear™.
Fluorescence microscopy is commonly used to investigate disease progression in biological tissues. Biological tissues, however, are strongly scattering in the visible wavelengths, limiting the application of fluorescence microscopy to superficial (<200µm) regions. Optical clearing, which involves incubation of the tissue in a chemical bath, reduces the optical scattering in tissue, resulting in...
متن کاملChemical Principles in Tissue Clearing and Staining Protocols for Whole-Body Cell Profiling.
Mammalian bodies have more than a billion cells per cubic centimeter, which makes whole-body cell (WBC) profiling of an organism one of the ultimate challenges in biology and medicine. Recent advances in tissue-clearing technology have enabled rapid and comprehensive cellular analyses in whole organs and in the whole body by a combination of state-of-the-art technologies of optical imaging and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2015